CISC422/853: Formal Methods [iIFEE

in Software Engineering:

Computer-Aided Verification s

AMD ANALFIIE
CWITH LOTT
oF FICTURESY

g com

Topic 3: Intro to BIR and Bogor

Juergen Dingel
Jan, 2009

CISC422/853, Winter 2009

()

VY

Modeling Behaviour of Systems

= Where are we?
« We've decided to use FSAs to model the behaviour of
software systems
* Have seen:
° Definition
° Two types of parallel composition
° Various related alternatives

= What's next?

* But, to be able to feed FSAs into a model checker, we need to
be able to express FSAs textually in some language

« Also, it would be nice if that language was as high-level (user-
friendly) as possible.

¢ 2 examples for modeling languages based on FSAs:
° BIR (used by Bogor model checker)
° Promela (used by Spin model checker)

CISC422/853, Winter 2009 2

CISC853: Contents

. Concurrency
. Modeling: How to describe behaviour of a software system?

° finite automata

. Intro to 2 software model checkers

° Bogor (Santos group at Kansas State University)
° Spin (G. Holzmann at JPL)

. Model checking |

° algorithms for basic exploration

. Specifying: How to express properties of a software system?

° assertions, invariants, safety and liveness properties
° Linear temporal logic (LTL) and Buechi automata

. Model checking Il

° algorithms for checking properties

. Overview of Software Model Checking tools

CISC422/853, Winter 2009

BIR, Bogor, and Bandera

= BIR (Bandera Intermediate Representation) is the
input language used by the Bogor model checker

= Bogor is the model checker used for the next
generation of Bandera

= Bandera is a model checking framework for Java
programs
» automatic translation of
° Java programs into BIR
° BIR counter examples back to Java
« display of counter examples
¢ specification manager
e automatic optimization (abstraction, slicing)

= All developed at Kansas State University

CISC422/853, Winter 2009 4

More BIR, Please!

= BIR is a guarded command language
when <condition> do <command>
= Support for standard features of oo-languages, e.g.,
« dynamically created objects and threads

« exceptions
 inheritance

* locks

« user-defined data types

= reduce the semantic gap between OO-
programming languages and input language of

model checker

= Support for non-determinism

= Next: BIR syntax and semantics

CISC422/853, Winter 2009

Example 1: Dining Philosophers

system TwoDiningPhilosophers {

boolean forkl; |//

boolean fork2;

active thread Philosopher1() {

loc locO: // take first fork loc locO:
when !forkl do { forkl := true; } when Ifork2 do
goto locl; goto locl;
loc loc1: // take second fork loc loc1:
when !fork2 do { fork2 := true; } when !forkl do
goto loc2; goto loc2;
loc loc2: // put second fork loc loc2:
do { fork2 := false; } do { forkl := false; }
goto loc3; goto loc3;
loc loc3: // put first fork loc loc3:

do { forkl := false; }

goto locO;

3

,J variable declaration ‘

goto locO;

3}

active thread Philosopher2() {
// take second fork

// put second fork
do { fork2 := false; }

{ fork2 := true; }

// take first fork
{ forkl := true; }

// put first fork

CISC422/853, Winter 2009

[source: CIS842 @ KSU] ©

Example 1: Dining Philosophers
(Cont’d)

system TwoDiningPhilosophers {
boolean fork1;
boolean fork2;

thread declarations (active =
thread is started automatically)

active thread Philosopher1() {

loc locO: // take first fork
when !forkl do { forkl := true; }
goto locl;

loc loc1: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

loc loc2: // put second fork
do { fork2 := false; }
goto loc3;

loc loc3: // put first fork
do { forkl := false; }
goto locO;

3

active thread Philosopher2() {

loc locO: // take second fork
when !fork2 do { fork2 := true; }
goto loc1;

loc loc1: // take first fork
when !forkl do { forkl := true; }
goto loc2;

loc loc2: // put first fork
do { forkl := false; }
goto loc3;

loc loc3: // put second fork
do { fork2 := false; }
goto locO;

1

BIR: Guarded Transformations (a.k.a.,
Guarded Commands)

Control
location

When - T

condition is
true, ...

Trivially true |-----
guard

CISC422/853, Winter 2009

[source: CIS842 @ KSU] ’

CISC422/853, Winter 2009

active thread Philosopher1() {

- - loc locO: // take first fork
when !forkl do { forkl := true; }
goto locl; Tl

loc loc1: // take second fork
_--when !fork2 do { fork2 := true; }
goto loc2;
loc loc2: // put second fork
do { fork2 := false; }
goto loc3;
loc loc3: // put first fork

t -- do { forkl := false; }

goto locO;

}

... then execute
"1 statement(s)
inside do {...}
atomically

[source: CIS842 @ KSU] ®

BIR: Guarded Transformations (a.k.a.,
Guarded Commands) (Cont’d)

Can have several transformations per location!

BIR: State

A BIR state consists of...

system TwoDiningPhilosophers {

|

boolean fork1; ’\
boolean fork2; ’ ... the values of global variables and ...

Example: Part of simplified BIR grammar:
s i o i active thread Philosopher1() { active thread Philosopher2() {
Dtk tials “?;]?g;;, :5::;2;_id> loc locO: // take first fork loc locO: 7/ take second fork
loc locO: “("<params>?“)" <local-var-decls> when !forkl do { fork1l := true; } when !fork2 do { fork2 := true; }
when x <y do {...} <location>+ goto locl; goto locl;
goto locl; <location>::= *loc” <loc-id>*:" <transform=>+ loc loc1: // take second fork loc locl: 7/ take first fork
) — .) — .
when x >y do {..} <transform> ::= <guard>? “do” “{*“ <action>* “}” :tinl(.)?erKZ do { fork2 := true; \év:tink.)zozr.kl do { forkd := true: ¥
goto loc2; <jump=>";" | ... ’ ,
when x==y do {...} <guard> ::= “when” <exp> loc loc2: // put second fork loc loc2: // put first fork
oto loc3; do { forkl := false; }
¢ locL. g <action> ::= <assignment> | for each thread, the. goto loc3:
- <jump> ::= “goto” <loc-id> | current control Iocagon o for each thread, the values
“return” <local-var-id> (program counter) and ... 9 of its local variables (but
goto locO; none here)
CISC422/853, Winter 2009 bogor.projects.cis.ksu.edu/manual 9 b 3}
BIR Types BIR: State Notation
= Supported types Example:
e basic: boolean, int, long, float, double '
« range types: int(lower, upper), long(lower, upper) [pc,— 0, ..pc for Philosopherl is locO
+ enumeration types: enum cards {spades, hearts, clubs, diamonds} pc,— 1, ..pc for Philosopher2 is locl

= User-defined extension types
e primitive
e reference

° may be generic (similar to, e.g., generic collections in Java 1.5)
- Set.type<int> theSet = Set.create<int>(1,2,3,5);

= All types in BIR
« are bounded (finite) (e.g., int: -2147483648 to 2147483647)

* have a default value (e.g., int, long: 0) Very important!

CISC422/853, Winter 2009

(from a theoretical
standpoint at least)

forkl - false,
fork2 - true]

Sometimes abbreviated

[0, 1, false, true]

to

..value of forkl is ‘false’
..value of fork2 is ‘true’

...If the ordering of variable values is clear from

context

CISC422/853, Winter 2009

BIR: Transition Notation

active thread Philosopher1() { From state:
[pc, — 2, pc, 0,
lqgc loc2: // put second fork @ " “ »”
15 ffc;kz—f’:—fa—,s(;}—l forkl > “true”, fork2 - “true’]
lgotoloes — — — — system can make transition into state:
loc loc3: // put first fork [pcl — 3, pc,— 0,
do { forkl := false; } “ ” “ ”
goto locO; forkl— “true”, fork2 — “false”]
3
Notation:

7o [pey e 2, pey i 0, forkl “true”, fork2 - “true”]

.| The thread Philospherl executes the
°| transition leading out of loc2

CISC422/853, Winter 2009 [source: CIS842 @ KSU] 13

BIR: Execution Trace

An execution trace is a sequence of transitions between states

[pey +— 0. pez += 0, forkl — "false”, fork2 — "false”|
iy [pcy — L. peo +— 0. forkl — "true”, fork2 — "false”]
& [pe1 — 2. pco = 0, forkl +— "true”, fork2 — "true”|
s [pci — 3. pea +— 0. forkl — "true”, fork2 — "false”|
20 [pc1 — 3. pea — 1. forkl +— "true”, fork2 — "true”]
13 [pc1 — 0. pca — 1, forkl — "false”, fork2 +— "true”|
bl [pe1 — 0. peo +— 2, forkl +— "true”, fork2 — "true”]
2:2 [pct — 0. pco — 3, forkl — "false”, fork2 +— "true”|
23 [pey +— 0. pea +— 0, forkl — "false”, fork2 — "true”|

CISC422/853, Winter 2009 [source: CIS842 @ KSU] 14

Semantics: FSA Corresponding to BIR

Program
= What is the FSA App corresponding to the Dining
Philosophers BIR program (DP)?

= App = (S, s, L, 0, F) where
e States S:
° Atotal of 64 states:
- 4 locations for each philosopher (locO to loc3)
- 2 values for each fork
~ total: 4*4*2*2 = 64
° [0, 0, false, false] to [3, 3, true, true]
* Initial state s,
° each state component has a default initial value:
- for pc of thread t: the textually first location in the declaration of t
- for boolean variables: false
- for integer variables: 0
° s,=10, 0, false, false]

CISC422/853, Winter 2009 [SOUI‘CE: CIS842 @ KSU] 15

Semantics: FSA Corresponding to BIR
Program (Cont’'d)
= App = (S, s, L, 8, F) where

e States S ={[0, 0, false, false], ..., [3, 3, true, true]}

* Initial state s, = [0, O, false, false]

e Labels L ={i;j | i€ {0, ..., numThreads(DP)-1} A je {0, ...,

maxNumLocsInThread(DP)-1}

I/l here, numThreads(DP)=2, maxNumLocsInThread(DP)=4

* Transitions &:
° Each transition leading out of BIR location loc in thread t has an implicit
guard that only allows it to be enabled when t's program counter is at loc
° Have to see which pairs of states s, s’ each transition in the BIR code
gives rise to
° For App, there are 2*(8+8+16+16)=96 transitions in §; e.g., thread 1 has 8
transitions of the form ([0,1,,false,f,], [1, I,, true, f,]) out of loc. O

e Final states F = {s | s is deadlogked
el k} Bogor calls deadlocked states

CISC422/853, Winter 2009 “invalid end states”

Transition Examples

active thread Philosopher1() {
loc locO: // take first fork
when !forkl do { forkl := true; }
goto loc1;

loc locl: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

loc loc2: // put second fork
do { fork2 := false; }
goto loc3;

loc loc3: 7/ put first fork
do { forkl := false; }
goto locO;

}

CISC422/853, Winter 2009

We have
([, O, “true”, “false™, 1:1,
[2, 0, “true”, “true™) € &
and
(1, 2, “false”, “false”], 1:1,
[2, 2, “false”, “true™) € &
and more

[source: CIS842 @ KSU] **

BIR: Enabled & Disabled Transitions

A BIR transformation
loc i:
when b do {...}
goto j
of thread t is enabled in a particular state s if
 iisthe current control location of t, and
* b evaluates to true in s.

Example:

active thread Philosopher1() { This transformation is disabled on
loc locO: // take first fork

when !forkl do { forkl := true; } each of:
goto locl; . [1, 1, “true”, “true"]

loc locl: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

* [0, 0, “false”, “false”]
e [1, 2, “false”, “true”]

Why?

[source: CIS842 @ KSU] ™

Reachable States and State Space

= Not every state is reachable through a sequence of
transitions from the initial state

= For instance, the state

[pc, 2, pc,— 0, forkl— “false”, fork2— “false”]

is unreachable. Why?

= How many states does the DP examples have?
= How many reachable states does the DP example

have?

CISC422/853, Winter 2009

19

Non-determinism Revised

= More than one transition may be enabled in a given
state

= Sources of non-determinism in BIR programs:
¢ intra-thread: more than one transition in one thread enabled
« inter-thread: one enabled transition in more than one thread

= Example:
int x;
thread T1() { thread T2() {
loc loco: loc locO:

when x>=0 do {...} when x==0'do {...}
goto Iogl h N
when x==0'do {..} ")
return; }

3 enabled transitions in states with x=0 and pc;=loc0 and pc,=locO0.
CISC422/853, Winter 2009 \jodel checking allows you to explore them all! »

Schedules and Executions

= Schedules describe how non-determinism is resolved,
that is, which transitions are taken at each state

= A schedule thus determines an execution
= A program has more than one schedule/execution iff

it's non-deterministic

» In general, sources of non-determinism are:

¢ inputs

° from user or other applications

° at beginning of program and during execution

 thread scheduling policy

CISC422/853, Winter 2009

21

More BIR, Please!

system nDiningPhilosophers {
record Object {}

. records

arrays

record Fork extends Object { +— extension

boolean isHeld;
b

/ — constants

const MAX {

N =3;
} parameters

thread P(Fork f1, Fork f2) {
loc locO:
when Ifl.isHeld do {
fl.isHeld := true;
3

goto locl;

} // end thread Phil

CISC422/853, Winter 2009

state right after transform is invisible

3

main thread MAIN(Q) {
intc;
Fork[] forks;

loc locO:
when MAX.N > 1 do invisible {
forks := new Fork[MAX.N];
}
goto locl;
when MAX.N <=1 do {}
return;
loc locl:
when ¢ == 0 do invisible {...}
goto locl;
when ¢ < MAX.N && ¢ !=0 do invisible {
forks[c] := new Fork;
start P(forks[c-1], forks[c]);

ci=c+1;
3
goto locl;
when ¢ == MAX.N do invisible {...}
return;
3} // end thread MAIN

// end system nDiningPhilosophers

More BIR, Please! (Cont’'d)

Functions in BIR

Declaration

function random() returns int {

int i;

loc locO:
do {i:=0;}
goto locl;
do {i:=1;}
goto locl;

loc locl:
do {}
return i;

} // end function random

CISC422/853, Winter 2009

Use
thread t() {
Function invocation int c;
.|s a.transfo.rme.ltlon, o e
i.e., it's not inside a = invoke random()
when ... do {...}
goto locO;
Result of function loc loci:
invocation must be
assigned to } // end thread t
local variable!

23

More BIR, Please! (Cont’'d)

= More info on BIR

e http://bogor.projects.cis.ksu.edu

CISC422/853, Winter 2009

24

Bogor
= Model checker for dynamic and concurrent software
= Developed at Kansas State University
= Features
« input language directly supports many features of oo-languages, e.g.,
° dynamic objects and threads, dynamic method dispatch, locking
e very customizable and modular. Can
° add new data types: sets, priorities queues, etc
° change the representation of the state

Bogor (Cont’d)

Fls [3 Nedgate Sewch Prolct Bun Window e

Q- | |- B Bliws pesosce | @
2 gt 11 0| fhrardonzbe fhesobe b be m =]
& | B % = |[preten nbiningPhilosapbecs A
& Tents i
p— op recerd Obyect
] b 1
[}
st & i
[ep—] record Fork sscends Chieot
= TeT {
pract boolean isMeld: n
et 7 1
bt B bsgee-trad
e Temttt conat HAX
praject.
:""V"" . PHILCSOPNERS = 3:
ke

Conipen. b Brerd i

Implemented

in Java as an
Eclipse (IBM)
plug-in

Don't need to
know Eclipse

(can learn “on

° change change the behaviour of the searcher ‘w-) '>=ﬁ Imjl:”m"* T the job”)
« lots of powerful optimizations, e.g., N.M
° collapse compression, heap and thread symmetry, partial order reductions e =
= Already been customized to check [e — DEMO
« Java programs (Bandera project at KSU) = - - = e —
« real-time avionics systems (Cadena project at KSU)
« applications using the SIENA publish/subscribe infrastructure (Queen’s) —
CISC422/853, Winter 2009 25 CISC422/853, Winter 2009 26
Bogor (Cont’d) Bogor Architecture
= Currently, can use Bogor to check for = Goal: modularity and customizability
* assertion violations = Each component has a clearly defined interface
 invalid endstates (deadlocks)
° Safe ro el’tleS more On thIS Iater .lll‘llllll‘lllIIIIIIIIIIIIIIIIIIII.Illllllllllllllllllﬁ
P p (_) Front-End Meodel Checking Components. &
e LTL checking (more on this later) - =
= Planned for Bogor bir [TActionTaker : Veriiod
a erifie
e CTL checking E

« sophisticated counter example display using, e.g., MSCs

* incorporation into next generation of Bandera (the software
model checker for Java)

CISC422/853, Winter 2009 27

CISC422/853, Winter 2009

Counter
Example

28

Configuring Bogor

= A Bogor configuration is a set of pairs (key, value)

.| ITransformer Defaul tTransformer

Keys for component Java class implementation |
interfaces for each interface |
) IactionTaker = DefaultictionTaker
¢ i| IExpEvaluator = DefaultExpEvaluator
: ISchedul ingStrategist = DefaultSchedulingStrategist
| ISearcher = DefaultSearcher
t+-t| IStateManager = DefaultStateManager

IBacktrackingInfoFactory DefaultBacktrackingInfoFactory
;| I5tateFactory Defaul tStateFactory :
i| IvalueFactory = DefaultValueFactory

ISearcher maxErrors

Tt =' Options for componentij

= Change configuration by
= changing the value of a component option
= providing a different implementation for a component interface

CISC422/853, Winter 2009 29

More Info on BIR and Bogor

= bogor.projects.cis.ksu.edu
» Bogor software
¢ how to install and run Bogor
* BIR syntax
« example BIR models

} look into Manual

CISC422/853, Winter 2009 30

In Preparation for Assignment 1

Go to Bogor website (bogor.projects.cis.ksu.edu)

Download Bogor code

» accept license agreement
* create new account
Install Bogor

* JRE 1.5, or above

» Eclipse 3.1, or above

« GEF 3.0

Run Bogor on examples

 bogor.projects.cis.ksu.edu/manual |

provided on Bogor page

CISC422/853, Winter 2009 31

Forward Reference

= To do Assignment 1, need to know
¢ what invariants are and
* how to check them in Bogor

= Will talk in detail about how to express specifications a
bit later

= Next few slides just give you what you need to do
Assignment 1

CISC422/853, Winter 2009 32

Types of Formal Specifications for

Concurrent and Reactive Systems Assertions

= Assertions = Express a property of observables at particular Example:
) now (need for A1) location
= [nvariants . o thread T() {
. » Most basic formal specification; already used by
= Safety properties John von Neumann in 1947
. L - later loc loc7:
Iveness properties * In BIR and Promela: assert(b); hen b d
. . . when 0]
= What kind of correctness claim does an assertion {
make, that is, what does it mean if there is
« no assertion violation?: assert(x>y);

“No matter along which path control has reached the
location of the assertion, the boolean expression in }
the assertion evaluates to true at that location”

¢ an assertion violation?:

“There is at least one execution such that the boolean }
expression in the assertion does not evaluate to true
at that location”

Example: Checking Mutual Exclusion Example: Checking Mutual Exclusion
Using Assertions Using Assertions (Cont’d)

= Does protocol below ensure mutual exclusion and deadlock freedom? To check mutual exclusion, instrument protocol as follows:

. . system MuxTry {
= How can we check this using Bogor? boolean flagl;
boolean flag2;
system MuxTry { int c;
boolean flagl;
: thread T1 Q { thread T2 Q {
boolean flag2; loc locO: loc locO:
do {flagl := true;} goto loc2; do {flag2 := true;} goto loc2;

thread T1 Q { thread T2 QO {

loc locO: loc locO: loc loc2: loc loc2:

do {flagl := true:;} goto loc2; do {flag2 := true;} goto loc2; when (!flag2) do {} goto loc3; when (!flagl) do {} goto loc3;

- - _. . I oc 5 I oc3 ... R

loc loc2: loc loc2: : do {c := c+l1; assert(c==1);} do {c := c+1; assert(c==1):}

when (!flag2) do {} goto loc3; when (!flagl) do {} goto loc3; : goto loc4; goto loc4; - . :
L P T T TP P P PP PP T PP PIPTY PP P P P P PP PP PPPPPPPP crltlcalreglonsl
: loc loc3: loc loc3: loc loc4: loc loc4:
i do oto loc4; do oto loc4; = r . do {c := c-1; flagl := false;} do {c := c-1; flag2 := false;}
. {}g .. { }g cr/t/ca/reglonﬂ goto locO; goto locO;

loc loc4: loc loc4: } ¥

do {flagl := false; oto locO; do {flag2 := false; oto locO;

3} LR } 9 } {flag }o What about deadlock freedom?

5 g!ﬂ!’gg! Wlmer !'009 35 CISC422/853, Winter 2009 36

Detour: Assertions in Java

= Java 1.5 (since 1.4) also supports assertions

= What does it mean if a Java assertion is
* violated?

¢ not violated?

= What's the difference between assertions in
Bogor/Spin and Java?

CISC422/853, Winter 2009

37

Invariants

Express property of observables that holds at every
location

What kind of correctness claim does an invariant
make, that is, what does it mean if there is

e no invariant violation?:

“At all locations along all executions of the system, the property
holds”

e an invariant violation?:
“There is at least one location along an execution such that the

property does not hold at that location”

= How do invariants compare to

e assertions?

* “loop invariants” in Hoare Logic?

CISC422/853, Winter 2009

Multiplication Example

Consider a simple program with a loop invariant

// assume parameters m and n
count := m;
output := 0;

// loop invariant: m * n == output + (count * n)
while (count > 0) do {

output := output + n;

count := count — 1;

}

CISC422/853, Winter 2009 [Source: CIS842@KSU]

39

Multiplication Example

BIR Version: Using two threads is unnatural, but the
system Mult { motivation will be clear in a moment...
int m; thread T1 () {

intn; loc locO:

int count; when (count > 0)

int output;

main thread Main () {
loc locO:
do {m := (int (0,255)) 5;

count := count - 1;}
goto locO;
when (count == 0) do {}
return;

do {output := output + n;}

n := (int (0,255)) 4; }
count := m; === Remember: |
output := (int (0,255)) 0; No interleaving between these two
start T1(); assignments!

} return;

}

CISC422/853, Winter 2009

Now, ...how to program the
check of the invariant?
[Source: CIS842@KSU]

40

Checking Invariants Multiplication Example: Checking

Invariants
e To check invariant | on a S system Mult { thread T1 () {
main real aln .
i loc locO:
program Wlth the threads main thread Main () { e (count > 0) do {
Main, T1, ..., Tn loc locO: oUtpUt = oUtpUE + n:
add an assertion of | as the loc locAssert: do {m := (int (0,255)) 5; count := count - 1:
last transition of Main: do {assert (1):} N (02594 }
' return; TS 5= 1T to locO;
- ’ output := (int (0,255)) 0; goto locO;
* Why does this work? start T10; TR (i ==0) G510
* Model-checker will explore all possible interleavings } return;
goto locl; }

between Main and each Ti

eeccccccccccccccccce

e Thus, the assertion statement will get interleaved (on some ’Assertlon gusy I

trace) between every pair of execution steps of each Ti and
thus checking the invariant on every state along every
possible execution of T1, ..., Tn

loc locl:
do {assert (m*n ==
output+(count*n));}
return;

ecc0ccccccccccceg
ee0ccccco oo

[

CISC422/853, Winter 2009 [Source: CIS842@KSU] 41 CISC422/853, Winter 2009 [Source: CIS842@KSU] 42

Checking Invariants

= gssertion transition (locl in Main)

’ Initialization in Main I

............................ [T acton |

After Main finishes, || ..
there are no other -
choice points aAloNg [lerereereresefeesenereseseanns
the tree path

In other words, there exists a path where we do 0 steps of T1 then
check I, there exists a path where we do 1 step of T1 then check I,
there exists a path where we do 2 steps of T1, then check I, etc.

CISC422/853, Winter 2009 [Source: CIS842@KSU] 43

