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Modeling Behaviour of Systems

= Where are we?
« We've decided to use FSAs to model the behaviour of
software systems
* Have seen:
° Definition
° Two types of parallel composition
° Various related alternatives

= What's next?

* But, to be able to feed FSAs into a model checker, we need to
be able to express FSAs textually in some language

« Also, it would be nice if that language was as high-level (user-
friendly) as possible.

¢ 2 examples for modeling languages based on FSAs:
° BIR (used by Bogor model checker)
° Promela (used by Spin model checker)
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CISC853: Contents

. Concurrency
. Modeling: How to describe behaviour of a software system?

° finite automata

. Intro to 2 software model checkers

° Bogor (Santos group at Kansas State University)
°  Spin (G. Holzmann at JPL)

. Model checking |

° algorithms for basic exploration

. Specifying: How to express properties of a software system?

° assertions, invariants, safety and liveness properties
° Linear temporal logic (LTL) and Buechi automata

. Model checking Il

° algorithms for checking properties

. Overview of Software Model Checking tools
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BIR, Bogor, and Bandera

= BIR (Bandera Intermediate Representation) is the
input language used by the Bogor model checker

= Bogor is the model checker used for the next
generation of Bandera

= Bandera is a model checking framework for Java
programs
» automatic translation of
° Java programs into BIR
° BIR counter examples back to Java
« display of counter examples
¢ specification manager
e automatic optimization (abstraction, slicing)

= All developed at Kansas State University
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More BIR, Please!

= BIR is a guarded command language
when <condition> do <command>
= Support for standard features of oo-languages, e.g.,
« dynamically created objects and threads

« exceptions
 inheritance

* locks

« user-defined data types

= reduce the semantic gap between OO-
programming languages and input language of

model checker

= Support for non-determinism

= Next: BIR syntax and semantics
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Example 1: Dining Philosophers

system TwoDiningPhilosophers {

boolean forkl; |//

boolean fork2;

active thread Philosopher1() {

loc locO: // take first fork loc locO:
when !forkl do { forkl := true; } when Ifork2 do
goto locl; goto locl;
loc loc1: // take second fork loc loc1:
when !fork2 do { fork2 := true; } when !forkl do
goto loc2; goto loc2;
loc loc2: // put second fork loc loc2:
do { fork2 := false; } do { forkl := false; }
goto loc3; goto loc3;
loc loc3: // put first fork loc loc3:

do { forkl := false; }

goto locO;

3

,J variable declaration ‘

goto locO;

3}

active thread Philosopher2() {
// take second fork

// put second fork
do { fork2 := false; }

{ fork2 := true; }

// take first fork
{ forkl := true; }

// put first fork
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Example 1: Dining Philosophers
(Cont’d)

system TwoDiningPhilosophers {
boolean fork1;
boolean fork2;

thread declarations (active =
thread is started automatically)

active thread Philosopher1() {

loc locO: // take first fork
when !forkl do { forkl := true; }
goto locl;

loc loc1: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

loc loc2: // put second fork
do { fork2 := false; }
goto loc3;

loc loc3: // put first fork
do { forkl := false; }
goto locO;

3

active thread Philosopher2() {

loc locO: // take second fork
when !fork2 do { fork2 := true; }
goto loc1;

loc loc1: // take first fork
when !forkl do { forkl := true; }
goto loc2;

loc loc2: // put first fork
do { forkl := false; }
goto loc3;

loc loc3: // put second fork
do { fork2 := false; }
goto locO;

1

BIR: Guarded Transformations (a.k.a.,
Guarded Commands)

Control
location

When - T

condition is
true, ...

Trivially true |-----
guard
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[source: CIS842 @ KSU] ’
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active thread Philosopher1() {

- - loc locO: // take first fork
when !forkl do { forkl := true; }
goto locl; Tl

loc loc1: // take second fork
_--when !fork2 do { fork2 := true; }
goto loc2;
loc loc2: // put second fork
do { fork2 := false; }
goto loc3;
loc loc3: // put first fork

t -- do { forkl := false; }

goto locO;

}

... then execute
"1 statement(s)
inside do {...}
atomically

[source: CIS842 @ KSU] ®




BIR: Guarded Transformations (a.k.a.,
Guarded Commands) (Cont’d)

Can have several transformations per location!

BIR: State

A BIR state consists of...

system TwoDiningPhilosophers {

|

boolean fork1; ’\
boolean fork2; ’ ... the values of global variables and ...

Example: Part of simplified BIR grammar:
s i o i active thread Philosopher1() { active thread Philosopher2() {
Dtk tials “?;]?g;;, :5::;2;_id> loc locO: // take first fork loc locO: 7/ take second fork
loc locO: “("<params>?“)" <local-var-decls> when !forkl do { fork1l := true; } when !fork2 do { fork2 := true; }
when x <y do {...} <location>+ goto locl; goto locl;
goto locl; <location>::=  *loc” <loc-id>*:" <transform=>+ loc loc1: // take second fork loc locl: 7/ take first fork
) — . ) — .
when x >y do {..} <transform> ::= <guard>? “do” “{*“ <action>* “}” :tinl(.)?erKZ do { fork2 := true; \év:tink.)zozr.kl do { forkd := true: ¥
goto loc2; <jump=>";" | ... ’ ,
when x==y do {...} <guard> ::= “when” <exp> loc loc2: // put second fork loc loc2: // put first fork
oto loc3; do { forkl := false; }
¢ locL. g <action> ::= <assignment> | ... ... for each thread, the. goto loc3:
- <jump> ::= “goto” <loc-id> | current control Iocagon o for each thread, the values
“return” <local-var-id> (program counter) and ... 9 of its local variables (but
goto locO; none here)
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BIR Types BIR: State Notation
= Supported types Example:
e basic: boolean, int, long, float, double '
« range types: int(lower, upper), long(lower, upper) [pc,— 0, ..pc for Philosopherl is locO
+ enumeration types: enum cards {spades, hearts, clubs, diamonds} pc,— 1, ..pc for Philosopher2 is locl

= User-defined extension types
e primitive
e reference

° may be generic (similar to, e.g., generic collections in Java 1.5)
- Set.type<int> theSet = Set.create<int>(1,2,3,5);

= All types in BIR
« are bounded (finite) (e.g., int: -2147483648 to 2147483647)

* have a default value (e.g., int, long: 0) Very important!
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(from a theoretical
standpoint at least)

forkl - false,
fork2 - true]

Sometimes abbreviated

[0, 1, false, true]

to

..value of forkl is ‘false’
..value of fork2 is ‘true’

...If the ordering of variable values is clear from

context
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BIR: Transition Notation

active thread Philosopher1() { From state:
[pc, — 2, pc, 0,
lqgc loc2: // put second fork @ " “ »”
15 ffc;kz—f’:—fa—,s(;}—l forkl > “true”, fork2 - “true’]
lgotoloes — — — — system can make transition into state:
loc loc3: // put first fork [pcl — 3, pc,— 0,
do { forkl := false; } “ ” “ ”
goto locO; forkl— “true”, fork2 — “false”]
3
Notation:

7o [pey e 2, pey i 0, forkl “true”, fork2 - “true”]

.| The thread Philospherl executes the
°| transition leading out of loc2
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BIR: Execution Trace

An execution trace is a sequence of transitions between states

[pey +— 0. pez += 0, forkl — "false”, fork2 — "false”|
iy [pcy — L. peo +— 0. forkl — "true”, fork2 — "false”]
& [pe1 — 2. pco = 0, forkl +— "true”, fork2 — "true”|
s [pci — 3. pea +— 0. forkl — "true”, fork2 — "false”|
20 [pc1 — 3. pea — 1. forkl +— "true”, fork2 — "true”]
13 [pc1 — 0. pca — 1, forkl — "false”, fork2 +— "true”|
bl [pe1 — 0. peo +— 2, forkl +— "true”, fork2 — "true”]
2:2 [pct — 0. pco — 3, forkl — "false”, fork2 +— "true”|
23 [pey +— 0. pea +— 0, forkl — "false”, fork2 — "true”|
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Semantics: FSA Corresponding to BIR

Program
= What is the FSA App corresponding to the Dining
Philosophers BIR program (DP)?

= App = (S, s, L, 0, F) where
e States S:
° Atotal of 64 states:
- 4 locations for each philosopher (locO to loc3)
- 2 values for each fork
~ total: 4*4*2*2 = 64
° [0, 0, false, false] to [3, 3, true, true]
* Initial state s,
° each state component has a default initial value:
- for pc of thread t: the textually first location in the declaration of t
- for boolean variables: false
- for integer variables: 0
° s,=10, 0, false, false]
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Semantics: FSA Corresponding to BIR
Program (Cont’'d)
= App = (S, s, L, 8, F) where

e States S ={[0, 0, false, false], ..., [3, 3, true, true]}

* Initial state s, = [0, O, false, false]

e Labels L ={i;j | i€ {0, ..., numThreads(DP)-1} A je {0, ...,

maxNumLocsInThread(DP)-1}

I/l here, numThreads(DP)=2, maxNumLocsInThread(DP)=4

* Transitions &:
° Each transition leading out of BIR location loc in thread t has an implicit
guard that only allows it to be enabled when t's program counter is at loc
° Have to see which pairs of states s, s’ each transition in the BIR code
gives rise to
° For App, there are 2*(8+8+16+16)=96 transitions in §; e.g., thread 1 has 8
transitions of the form ([0,1,,false,f,], [1, I,, true, f,]) out of loc. O

e Final states F = {s | s is deadlogked
el k} Bogor calls deadlocked states

CISC422/853, Winter 2009 “invalid end states”




Transition Examples

active thread Philosopher1() {
loc locO: // take first fork
when !forkl do { forkl := true; }
goto loc1;

loc locl: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

loc loc2: // put second fork
do { fork2 := false; }
goto loc3;

loc loc3: 7/ put first fork
do { forkl := false; }
goto locO;

}
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We have
([, O, “true”, “false™, 1:1,
[2, 0, “true”, “true™) € &
and
(1, 2, “false”, “false”], 1:1,
[2, 2, “false”, “true™) € &
and more

[source: CIS842 @ KSU] **

BIR: Enabled & Disabled Transitions

A BIR transformation
loc i:
when b do {...}
goto j
of thread t is enabled in a particular state s if
 iisthe current control location of t, and
* b evaluates to true in s.

Example:

active thread Philosopher1() { This transformation is disabled on
loc locO: // take first fork

when !forkl do { forkl := true; } each of:
goto locl; . [1, 1, “true”, “true"]

loc locl: // take second fork
when !fork2 do { fork2 := true; }
goto loc2;

* [0, 0, “false”, “false”]
e [1, 2, “false”, “true”]

Why?

[source: CIS842 @ KSU] ™

Reachable States and State Space

= Not every state is reachable through a sequence of
transitions from the initial state

= For instance, the state

[pc, 2, pc,— 0, forkl— “false”, fork2— “false”]

is unreachable. Why?

= How many states does the DP examples have?
= How many reachable states does the DP example

have?

CISC422/853, Winter 2009
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Non-determinism Revised

= More than one transition may be enabled in a given
state

= Sources of non-determinism in BIR programs:
¢ intra-thread: more than one transition in one thread enabled
« inter-thread: one enabled transition in more than one thread

= Example:
int x;
thread T1() { thread T2() {
loc loco: loc locO:

when x>=0 do {...} when x==0'do {...}
goto Iogl h N
when x==0'do {..} " )
return; }

3 enabled transitions in states with x=0 and pc;=loc0 and pc,=locO0.
CISC422/853, Winter 2009 \jodel checking allows you to explore them all! »




Schedules and Executions

= Schedules describe how non-determinism is resolved,
that is, which transitions are taken at each state

= A schedule thus determines an execution
= A program has more than one schedule/execution iff

it's non-deterministic

» In general, sources of non-determinism are:

¢ inputs

° from user or other applications

° at beginning of program and during execution

 thread scheduling policy

CISC422/853, Winter 2009
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More BIR, Please!

system nDiningPhilosophers {
record Object {}

. records

arrays

record Fork extends Object { +— extension

boolean isHeld;
b

/ — constants

const MAX {

N =3;
} parameters

thread P(Fork f1, Fork f2) {
loc locO:
when Ifl.isHeld do {
fl.isHeld := true;
3

goto locl;

} // end thread Phil
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state right after transform is invisible

3

main thread MAIN(Q) {
intc;
Fork[] forks;

loc locO:
when MAX.N > 1 do invisible {
forks := new Fork[MAX.N];
}
goto locl;
when MAX.N <=1 do {}
return;
loc locl:
when ¢ == 0 do invisible {...}
goto locl;
when ¢ < MAX.N && ¢ !=0 do invisible {
forks[c] := new Fork;
start P(forks[c-1], forks[c]);

ci=c+1;
3
goto locl;
when ¢ == MAX.N do invisible {...}
return;
3} // end thread MAIN

// end system nDiningPhilosophers

More BIR, Please! (Cont’'d)

Functions in BIR

Declaration

function random() returns int {

int i;

loc locO:
do {i:=0;}
goto locl;
do {i:=1;}
goto locl;

loc locl:
do {}
return i;

} // end function random
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Use
thread t() {
Function invocation int c;
.|s a.transfo.rme.ltlon, o e
i.e., it's not inside a = invoke random()
when ... do {...}
goto locO;
Result of function loc loci:
invocation must be
assigned to } // end thread t
local variable!

23

More BIR, Please! (Cont’'d)

= More info on BIR

e http://bogor.projects.cis.ksu.edu

CISC422/853, Winter 2009
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Bogor
= Model checker for dynamic and concurrent software
= Developed at Kansas State University
= Features
« input language directly supports many features of oo-languages, e.g.,
° dynamic objects and threads, dynamic method dispatch, locking
e very customizable and modular. Can
° add new data types: sets, priorities queues, etc
° change the representation of the state

Bogor (Cont’d)

Fls [3 Nedgate Sewch Prolct Bun Window e
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Implemented

in Java as an
Eclipse (IBM)
plug-in

Don't need to
know Eclipse

(can learn “on

° change change the behaviour of the searcher ‘w- ) '>=ﬁ Imjl:”m"* T the job”)
« lots of powerful optimizations, e.g., N.M
° collapse compression, heap and thread symmetry, partial order reductions e =
= Already been customized to check [ e — DEMO
« Java programs (Bandera project at KSU) = - - = e —
« real-time avionics systems (Cadena project at KSU)
« applications using the SIENA publish/subscribe infrastructure (Queen’s) —
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Bogor (Cont’d) Bogor Architecture
= Currently, can use Bogor to check for = Goal: modularity and customizability
* assertion violations = Each component has a clearly defined interface
 invalid endstates (deadlocks)
° Safe ro el’tleS more On thIS Iater .lll‘llllll‘lllIIIIIIIIIIIIIIIIIIII.Illllllllllllllllllﬁ
P p ( _ ) Front-End Meodel Checking Components. &
e LTL checking (more on this later) - =
= Planned for Bogor bir [ TActionTaker : Veriiod
a erifie
e CTL checking E

« sophisticated counter example display using, e.g., MSCs

* incorporation into next generation of Bandera (the software
model checker for Java)
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Counter
Example
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Configuring Bogor

= A Bogor configuration is a set of pairs (key, value)

.| ITransformer Defaul tTransformer

Keys for component Java class implementation |
interfaces for each interface |
) IactionTaker = DefaultictionTaker
¢ i| IExpEvaluator = DefaultExpEvaluator
: ISchedul ingStrategist = DefaultSchedulingStrategist
| ISearcher = DefaultSearcher
t+-t| IStateManager = DefaultStateManager

IBacktrackingInfoFactory DefaultBacktrackingInfoFactory
;| I5tateFactory Defaul tStateFactory :
i| IvalueFactory = DefaultValueFactory

ISearcher maxErrors

Tt =' Options for componentij

= Change configuration by
= changing the value of a component option
= providing a different implementation for a component interface
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More Info on BIR and Bogor

= bogor.projects.cis.ksu.edu
» Bogor software
¢ how to install and run Bogor
* BIR syntax
« example BIR models

} look into Manual
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In Preparation for Assignment 1

Go to Bogor website (bogor.projects.cis.ksu.edu)

Download Bogor code

» accept license agreement
* create new account
Install Bogor

* JRE 1.5, or above

» Eclipse 3.1, or above

« GEF 3.0

Run Bogor on examples

 bogor.projects.cis.ksu.edu/manual |

provided on Bogor page
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Forward Reference

= To do Assignment 1, need to know
¢ what invariants are and
* how to check them in Bogor

= Will talk in detail about how to express specifications a
bit later

= Next few slides just give you what you need to do
Assignment 1

CISC422/853, Winter 2009 32




Types of Formal Specifications for

Concurrent and Reactive Systems Assertions

= Assertions = Express a property of observables at particular Example:
) now (need for A1) location
= [nvariants . o thread T() {
. » Most basic formal specification; already used by
= Safety properties John von Neumann in 1947
. L - later loc loc7:
Iveness properties * In BIR and Promela: assert(b); hen b d
. . . when 0]
= What kind of correctness claim does an assertion {
make, that is, what does it mean if there is
« no assertion violation?: assert(x>y);

“No matter along which path control has reached the
location of the assertion, the boolean expression in }
the assertion evaluates to true at that location”

¢ an assertion violation?:

“There is at least one execution such that the boolean }
expression in the assertion does not evaluate to true
at that location”

Example: Checking Mutual Exclusion Example: Checking Mutual Exclusion
Using Assertions Using Assertions (Cont’d)

= Does protocol below ensure mutual exclusion and deadlock freedom? To check mutual exclusion, instrument protocol as follows:

. . system MuxTry {
= How can we check this using Bogor? boolean flagl;
boolean flag2;
system MuxTry { int c;
boolean flagl;
: thread T1 Q { thread T2 Q {
boolean flag2; loc locO: loc locO:
do {flagl := true;} goto loc2; do {flag2 := true;} goto loc2;

thread T1 Q { thread T2 QO {

loc locO: loc locO: loc loc2: loc loc2:

do {flagl := true:;} goto loc2; do {flag2 := true;} goto loc2; when (!flag2) do {} goto loc3; when (!flagl) do {} goto loc3;

- - _. . I oc 5 I oc3 ........................................... R

loc loc2: loc loc2: : do {c := c+l1; assert(c==1);} do {c := c+1; assert(c==1):}

when (!flag2) do {} goto loc3; when (!flagl) do {} goto loc3; : goto loc4; goto loc4; - . :
L P T T TP P P PP PP T PP PIPTY PP P P P P PP PP PPPPPPPP crltlcalreglonsl
: loc loc3: loc loc3: loc loc4: loc loc4:
i do oto loc4; do oto loc4; = r . do {c := c-1; flagl := false;} do {c := c-1; flag2 := false;}
. {}g ................................................ { }g ................... cr/t/ca/reglonﬂ goto locO; goto locO;

loc loc4: loc loc4: } ¥

do {flagl := false; oto locO; do {flag2 := false; oto locO;

3} LR } 9 } {flag }o What about deadlock freedom?
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Detour: Assertions in Java

= Java 1.5 (since 1.4) also supports assertions

= What does it mean if a Java assertion is
* violated?

¢ not violated?

= What's the difference between assertions in
Bogor/Spin and Java?

CISC422/853, Winter 2009
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Invariants

Express property of observables that holds at every
location

What kind of correctness claim does an invariant
make, that is, what does it mean if there is

e no invariant violation?:

“At all locations along all executions of the system, the property
holds”

e an invariant violation?:
“There is at least one location along an execution such that the

property does not hold at that location”

= How do invariants compare to

e assertions?

* “loop invariants” in Hoare Logic?
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Multiplication Example

Consider a simple program with a loop invariant

// assume parameters m and n
count := m;
output := 0;

// loop invariant: m * n == output + (count * n)
while (count > 0) do {

output := output + n;

count := count — 1;

}

CISC422/853, Winter 2009 [Source: CIS842@KSU]
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Multiplication Example

BIR Version: Using two threads is unnatural, but the
system Mult { motivation will be clear in a moment...
int m; thread T1 () {

intn; loc locO:

int count; when (count > 0)

int output;

main thread Main () {
loc locO:
do {m := (int (0,255)) 5;

count := count - 1;}
goto locO;
when (count == 0) do {}
return;

do {output := output + n;}

n := (int (0,255)) 4; }
count := m; === Remember: |
output := (int (0,255)) 0; No interleaving between these two
start T1(); assignments!

} return;

}
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Now, ...how to program the
check of the invariant?
[Source: CIS842@KSU]
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Checking Invariants Multiplication Example: Checking

Invariants
e To check invariant | on a S system Mult { thread T1 () {
main real aln .
i loc locO:
program Wlth the threads main thread Main () { e (count > 0) do {
Main, T1, ..., Tn loc locO: oUtpUt = oUtpUE + n:
add an assertion of | as the loc locAssert: do {m := (int (0,255)) 5; count := count - 1:
last transition of Main: do {assert (1):} N (02594 }
' return; TS 5= 1T to locO;
- ’ output := (int (0,255)) 0; goto locO;
* Why does this work? start T10; TR (i ==0) G510
* Model-checker will explore all possible interleavings } return;
goto locl; }

between Main and each Ti

eeccccccccccccccccce

e Thus, the assertion statement will get interleaved (on some ’Assertlon gusy I

trace) between every pair of execution steps of each Ti and
thus checking the invariant on every state along every
possible execution of T1, ..., Tn

loc locl:
do {assert (m*n ==
output+(count*n));}
return;

ecc0ccccccccccceg
ee0ccccco oo

[
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Checking Invariants

= gssertion transition (locl in Main)

’ Initialization in Main I

............................ [ T acton |

After Main finishes, || ..
there are no other -
choice points aAloNg  [lerereereresefeesenereseseanns
the tree path

In other words, there exists a path where we do 0 steps of T1 then
check I, there exists a path where we do 1 step of T1 then check I,
there exists a path where we do 2 steps of T1, then check I, etc.
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